On the Plus and the Minus Selmer Groups for Elliptic Curves at Supersingular Primes
نویسندگان
چکیده
منابع مشابه
The Iwasawa invariants of the plus/minus Selmer groups of elliptic curves for supersingular primes
We study the Iwasawa μand λ-invariants of the plus/minus Selmer groups of elliptic curves with the same residual representation using the ideas of [8]. As a result we find a family of elliptic curves whose plus/minus Selmer groups have arbitrarily large λ-invariants.
متن کاملPlus/minus Heegner Points and Iwasawa Theory of Elliptic Curves at Supersingular Primes
Let E be an elliptic curve over Q and let p ≥ 5 be a prime of good supersingular reduction for E. Let K be an imaginary quadratic field satisfying a modified “Heegner hypothesis” in which p splits, write K∞ for the anticyclotomic Zp-extension of K and let Λ denote the Iwasawa algebra of K∞/K. By extending to the supersingular case the Λ-adic Kolyvagin method originally developed by Bertolini in...
متن کاملThe main conjecture for CM elliptic curves at supersingular primes
At a prime of ordinary reduction, the Iwasawa “main conjecture” for elliptic curves relates a Selmer group to a p-adic L-function. In the supersingular case, the statement of the main conjecture is more complicated as neither the Selmer group nor the p-adic L-function is well-behaved. Recently Kobayashi discovered an equivalent formulation of the main conjecture at supersingular primes that is ...
متن کاملThe anticyclotomic Main Conjecture for elliptic curves at supersingular primes
The Main Conjecture of Iwasawa theory for an elliptic curve E over Q and the anticyclotomic Zp-extension of an imaginary quadratic field K was studied in [BD2], in the case where p is a prime of ordinary reduction for E. Analogous results are formulated, and proved, in the case where p is a prime of supersingular reduction. The foundational study of supersingular main conjectures carried out by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tokyo Journal of Mathematics
سال: 2018
ISSN: 0387-3870
DOI: 10.3836/tjm/1502179270